kilopop.mappings.tanaka_mean_fixed
- class kilopop.mappings.tanaka_mean_fixed(*args, **kwargs)[source]
Bases:
Model
Construct piece-wise mean function model based on Tanaka et al. 2019.
Mean model class to be used with the Gaussian process model of the opacity surface. This is based on the work of Tanaka et. al 2019.
- __init__(*args, **kwargs)
- __call__(**kwargs)
Call self as a function.
Methods
__init__
(*args, **kwargs)check_parameter_vector
(vector)compute_gradient
(*args, **kwargs)Compute the "gradient" of the model for the current parameters
Freeze all parameters of the model
freeze_parameter
(name)Freeze a parameter by name
get_gradient
(*args, **kwargs)get_parameter
(name)Get a parameter value by name
get_parameter_bounds
([include_frozen])Get a list of the parameter bounds
get_parameter_dict
([include_frozen])Get an ordered dictionary of the parameters
get_parameter_names
([include_frozen])Get a list of the parameter names
get_parameter_vector
([include_frozen])Get an array of the parameter values in the correct order
get_value
(kilonova_ejecta_array)Get value function in george format.
Compute the log prior probability of the current parameters
parameter_sort
(f)set_parameter
(name, value)Set a parameter value by name
set_parameter_vector
(vector[, include_frozen])Set the parameter values to the given vector
Thaw all parameters of the model
thaw_parameter
(name)Thaw a parameter by name
Attributes
The total number of parameters (including frozen parameters)
parameter_names
An array of all parameters (including frozen parameters)
The number of active (or unfrozen) parameters
- compute_gradient(*args, **kwargs)
Compute the “gradient” of the model for the current parameters
The default implementation computes the gradients numerically using a first order forward scheme. For better performance, this method should be overloaded by subclasses. The output of this function should be an array where the first dimension is
full_size
.
- freeze_all_parameters()
Freeze all parameters of the model
- freeze_parameter(name)
Freeze a parameter by name
- Parameters:
name – The name of the parameter
- property full_size
The total number of parameters (including frozen parameters)
- get_parameter(name)
Get a parameter value by name
- Parameters:
name – The name of the parameter
- get_parameter_bounds(include_frozen=False)
Get a list of the parameter bounds
- Parameters:
include_frozen (Optional[bool]) – Should the frozen parameters be included in the returned value? (default:
False
)
- get_parameter_dict(include_frozen=False)
Get an ordered dictionary of the parameters
- Parameters:
include_frozen (Optional[bool]) – Should the frozen parameters be included in the returned value? (default:
False
)
- get_parameter_names(include_frozen=False)
Get a list of the parameter names
- Parameters:
include_frozen (Optional[bool]) – Should the frozen parameters be included in the returned value? (default:
False
)
- get_parameter_vector(include_frozen=False)
Get an array of the parameter values in the correct order
- Parameters:
include_frozen (Optional[bool]) – Should the frozen parameters be included in the returned value? (default:
False
)
- get_value(kilonova_ejecta_array)[source]
Get value function in george format.
- Parameters:
self (class instance) – Reference to class instance.
kilonova_ejecta_array (array) – Array of kilonova ejecta parameter pairs.
- Returns:
mean_function_value – The mean function value at the given kilonova parameters.
- Return type:
array
- log_prior()
Compute the log prior probability of the current parameters
- property parameter_vector
An array of all parameters (including frozen parameters)
- set_parameter(name, value)
Set a parameter value by name
- Parameters:
name – The name of the parameter
value (float) – The new value for the parameter
- set_parameter_vector(vector, include_frozen=False)
Set the parameter values to the given vector
- Parameters:
vector (array[vector_size] or array[full_size]) – The target parameter vector. This must be in the same order as
parameter_names
and it should only include frozen parameters ifinclude_frozen
isTrue
.include_frozen (Optional[bool]) – Should the frozen parameters be included in the returned value? (default:
False
)
- thaw_all_parameters()
Thaw all parameters of the model
- thaw_parameter(name)
Thaw a parameter by name
- Parameters:
name – The name of the parameter
- property vector_size
The number of active (or unfrozen) parameters